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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-140

DISSOCIATIVE RELAXATION OF OXYGEN OVER AN ADIARATIC
FLAT PLATE AT HYPERSONIC MACH NUMBERS

By Paul M. Chung and Aemer D. Anderson
SUMMARY

The integral method was used to study the dissociative relaxation

phenomensa of pure oxygen over an adiabatic flat plate at hypersonic Mach
numbers.

By means of the integral method, a solution was obtained, with
relative ease, to a problem involving finite rate dissociation and
recombination in a hypersonic laminar boundary layer.

It was found that dissociative equilibrium is never approximated
over an adiabatic flat plate of reasonable length when the conditions cf
the free stream are those of the atmosphere at the altitude range from
50,000 to 200,000 feet and Mach numbers from 10 to 20.

It is predicted on the basis of the present analysis that heat
transfer to a highly cooled flat plate may be quite closely approximated
by the values of heat transfer across a chemically inert boundary layer
with the same total energy per unit mass of the free-stream gas, at

least for Mach numbers below 20 at the altitudes considered here.

INTRODUCTION

In hypersonic flight, chemical reactions begin to play an important
role in aerodynamic heat transfer. Dissociation occurs across the strong
bow shock waves formed by a blunt body, and the dissocilated radicals
predominantly recombine within the gas or on the surface as they flow
along the body.

The shock wave formed by a slender body, on the other hand, is quite
weak and the Mach number downstream from the shock is of the order of
that in the frec ctrcam. In this case, the gas-phase reacilon ls pre-—
dominantly that of dissociation in the boundary layer because of the high
viscous dissipation.

These problems have been analyzed by several people and a rather
complete resum€ of the work appears in references 1 and 2. A review of
the existing literature on the problem, however, reveals that most of



the theoretical work on the subject has been limited to a few specific
cases, where the gas-phase chemical reactions have usually been assumed
to occur at an infinitely fast rate when they occur at all. This basic
assumption implies that the chemical reactions are completely controlled
by the transport characteristics of the boundary layer. The problem then
can be solved using, with little modification, the conventional boundary-
layer analysis, and affine solutions to the problem can usually be
obtained.

Most studies which included surface reactions have considered the
gas-phase reaction to be chemically frozen. The chemical reactions in
the gas phase, however, usually occur at finite rates. The consideration
of finite reaction rates involves chemical reaction kinetics and incor-
porating them into the boundary-layer analysis usually results in a
breakdown of the affine characteristics of the boundary-layer equations.

Only at the stagnation region of blunt bodies can the conventional
affine transformation be used to solve the exact boundary-layer equations
including the effect of finite chemical reaction rates. ©Some of these *
solutions were obtained in references 3 and 4. Aside from the stagnation
region in which the velocity of the gas at the edge of the boundary layer
is a linear function of the distance along the surface, the usual method v
of transformation fails to transform the partial differential equations
of the boundary layer into a set of ordinary differential equations when
finite chemical reaction rates are included.

There seem to be two methods existing today which may, in general,
be used to solve the problems of hypersonic laminar heat transfer with
finite rate dissociation and recombination. The first is a modified
application of the von Karmén integral method. This method was used
successfully in reference 5 to solve a problem of ignition and combustion
in a laminar mixing zone of two parallel streams of equal velocity. The
second involves integrating the boundary-layer equations directly with
respect to the independent variables of the partial differential equations
by a rather complicated iteration technique. This method was described
in reference 6 and it was applied to some problems of ignition in a
laminar boundary layer.

The present work 1s primarily concerned with investigating the use
of the first method in solving problems involving finite rate chemical
reactions of air in hypersonic laminar boundary layers. The first method
is chosen here because it seems to be less complicated and more flexible
in applications.

The simple physical model used for the primary purpose stated is the »
nonequilibrium dissociation of pure oxygen over an adiabatic and noncata-
lytic flat plate. The second purpose of the present work is to study,
for the particular physical model considered, the dissociative relaxation 4
phenomenon of oxygen in hypersonic laminar boundary layers.
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SYMBOLS

o
PooMoo

specific heat, cal/gram K
specific heat of the mixture, cal/gram °K
binary diffusion coefficient, cm2/sec

u

Vo
integral defined by equation (12)

integral defined by equation (13)

integral defined by equation (14)

total enthalpy defined by equation (19), cal/gram
heat of formation at absolute zero, cal/gram

heat of dissociation of Oz, cal/gram

thermal conductivity, cal/sec cm °k

specific dissociation rate coefficient, em3/mole sec
specific recombination rate coefficient, cm®/mole2 sec
equilibrium constant based on partial pressures, atm
reference length, cm

Lewis number, fr
Sc
mass fraction
molecular weight, gram/mole
Mach number of the free stream

pressure, atm

Hap

Prandtl number,



Re

Sc

Wi

universal gas constant, cmd atm/mole °K

temperature recovery factor

Poolool

0

Reynolds number,

Schmidt number, —-

eD
temperature, °K

x-component of velocity, cm/sec
y-component of velocity, cm/sec

net production rate of atoms per unit volume, gram/sec cm3

distance and direction parallel to the plate, cm unless otherwise
specified ’

distance and direction normal to the plate, cm
specific reaction rate defined by equation (34)
ratio of the specific heats of the free-stream gas
boundary-layer thickness, cm

dimensionless ordinate defined by equation (11)

T

T

[ve]

dimensionless variable defined by equation (9)

absolute viscosity, dyne sec/cm?

X
L
density, gram/cm3
Subscripts

ith species

atoms




2 molecules
o] at the wall

o0 free-stream condition
Superscript
total differentiation with respect to §

ANATYSIS

Conservation Equations

A flat plate with an infinitely sharp leading edge is considered to
be located in a uniform stream of molecular oxygen at hypersonic Mach
numbers as shown in figure 1.

The following conservation equations are obtained for a steady
laminar boundary layer over the plate where the streamwise pressure
gradient due to the boundary-layer displacement thickness is ignored.
The effects of radiation and thermal diffusion are neglected.

9_9}_1+2p-_v:=0
5% | oy
du ou

pu =2 + pv 22 = 9 " 8_u> momentum (2)
ox dy

on d _ 9 dh _ (1_pp) O(uB/2)
pu S + pv By By-{ [ - (1-Pr) Sy

continuity (1)

- (1-Le) }: hy omy }}- total energy  (3)

pu_éQ; + ov aml - ami) + Wy diffusion (%)
dx By



The boundary conditions are:

at y=0
u =0
v =20
éh‘:O
dy
Omy _ 0
dy
at Yy = o
U = Uy
h = hy
m1=0

The equation of state for the mixture is

p=(L+m) pyiT (5)

For the purpose of simplification, both the Prandtl number and the
lewis number are assumed to be equal to 1. This assumption does not alter
the basic results. The energy equation (3) then becomes

3n a_h=_@_<@> ‘
pu——+ovay S5 Sy (6)

The exact solution which satisfies equation (6) and the boundary condi-
tions is h = h,, for all x and y. The remaining conservation equa-

tions (1), (2), and (4) are solved here by first integrating them across
the boundary layer.

A comparatively simple application of the integral method to com-
pressible laminar boundary layers is given in reference 7 and is used
here. The essential simplification is accomplished by integrating all
the conservation equations in the y direction from the wall to the
edge of the momentum boundary layer, and by assuming pu/poop00 =C to be
constant. According to reference 2, the effect of this assumption is
small when the constant C dis properly chosen. The use of a single
boundary-layer thickness here does not impose any undue restrictions
on the problem because




o (1) Prandtl and lewis numbers are assumed to be equal to unity.

(2) The polynomial expression which is used here for the atom concen-—
tration profile, thus also the temperature profile, is permitted to contain
an additional coefficient not determined in advance by the boundary con-
ditions in accordance with the method described in reference 7.

The continuity equation is incorporated intc the momentum and the
diffusion equations, and the integration of these equations across the
boundary layer yields the following integro-differential equations

2V L mn
2>?\ + Fo

It

Fa (8)

where

A = @)2 503 (9)

o)
%:f £ g (10)
o]
y
L &
n =do_Pe (11)

Fl=fol.%o(--%>an (22)
\/;1 (-%) mydn (13)

1
f Y1 an (],lL)
Jo P

Fz

£le

The main addition to the conventional integro-differential equations
is Fs, given by equation (14). The behavior of equation (8) will largely
depend on the behavior of the integral Fs.



The integral method was used in reference 8 in the study of the
same problem of dissociation of oxygen over an adiabatic flat plate.
The reaction rate term wjy, however, which appears in the integral Fsz was
a priori assumed to be a known function of 1 in the reference. The
diffusion equation was, therefore, linearized and this afforded an
immediate integration of equation (14). This rather arbitrary approxi-
mation does not yield any quantitative information for finite values of
x, and the work was limited to estimating the length at which equilibrium
conditions were approached.

The reaction rate wy 1is obtained from chemical kinetics and this
phase will be considered in the next section.

Homogeneous Chemical Reactions

The kinetics of oxygen molecule-atom reaction have been considered
in several places in the literature. It is known that dissociation is
a second-order reaction whereas recombination is a third-order reaction
(see ref. 9 for the definition of order of reaction). Thus, the reversible
reaction can be expressed as:

kp
A + A +X 2 Ao + X (15)
1L 1 kd

where Aj; and Ay are the mole concentrations of atoms and molecules,
respectively, and X presents the mole concentration of a third particle
which must be present to activate the reaction. For the present case of
an oxygen atom and molecule mixture, X 1is the total number of mcles per
unit volume of the mixture.

The law of mass action (see ref. 9) yields the following net produc-
tion rate of atoms per unit volume of the mixture for the reaction repre-
sented by equation (15).

T

The form of the equation can be varied to suit the form of the conserva-
tion equations. The particular transformation used in reference 10 is
followed here.

The ratio kd/kr can be evaluated at the equilibrium condition,
and is defined as the equilibrium constant based on mole concentration.
It is related to the equilibrium constant based on partial pressures by

X
kd/kr = Kp D
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In reference 11 K, is given as exp (15.8 - (60,000/T)). Details of
the calculation of Kp can be found in reference 12. When the mole
concentrations are wrltten in terms of mj and the equation of state (5)
is introduced, equation (16) becomes

gooodg) 3 -nem]

Although much has been done elsewhere both theoretically and experi-
mentally to determine the value of k, as a function of temperature, it
is still not too well known.

Reference 13 by means of a statistical analysis showed that the
recombination coefficient should increase with temperature at lower
temperatures but should decrease with temperature at the higher temper-
atures encountered in this study. According to the Wignher theory, as
presented in reference 1k, ky 1is proportional to T‘l/z, a lesser decrease
with temperature than was indicated by the statistical analysis. It is
felt that the prediction of the Wigner theory is an upper limit on Kkp
in the temperature range considered here.

Recent experimental measurements of Kk, are reported in references 15
and 16. Both studies showed ky to vary as l/T2 These values are les
than those of the Wigner theory and the functional variation with temper—
ature is in essentlal agreement with the statistical analysis. The values
obtained in reference 15 were about twice those obtained in reference 16.
Although the choice between the two 1s somewhat arbitrary, the expression
used here is based upon the data of reference 15. It is

. = 1.98x1022 cmé >
r T2 mole2 sec

The final expression of the reaction term becomes

21 = _(1.98x1022)2 ( ;) 4 [l+ml - i; exp | 15.8 - §91999 (1-m l)} (18)

SOLUTION OF EQUATIONS FOR ADIABATIC TEMPERATURES

The previously derived equations are used here to solve for the
adiahat

e temmeratures.
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The total enthalpy h is given by:

2
h =Z himj + = (19)
i
where
T
hi =L cpid'I' + h?_ (20)

Consider Cpy for oxygen atoms and molecules. Figure 4 of refer-
ence 17 shows that the specific heat of atomic oxygen is a constant and
that the specific heat of molecular oxygen varies appreciably at lower
temperatures but becomes practically invariant with temperature above
about 2000° K. Therefore, Cp; 1s assumed to be constant. The expression
for total enthalpy now becomes:

h = [my(cp,-Cpy) + cpplT + myAR® + u2/2 (21)
Now
m1<i25:EEE€> << 1
Cpo
Therefore
h = cpT + myoh® + u2/2 (22)

It was shown in the section "Conservation Equations" that the
solution of the energy equation for the present case is that h is con-
stant throughout the flow field and is equal to the total energy in the
free stream.

Equation (22) immediately yields the temperatures as a function of
the atom mass fraction and the reduced velocity,

%o =0=14+ (-—éi> M2 (1-£2) - L (23)

o)
my
cpsz

The first step in solving the integro-differential equations (7)
and (8) is to assume appropriate profiles for the veloccity and the mass
fraction. A sixth degree polynomial is assumed for the velocity profile
and one of fifth degree for the atom mass fraction profile as:
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Eome(n) =) sar® (21)
n=o

my(&,1) =Z on (£)7" (25)
=0

The boundary conditions for equations (24) and (25) which are obtained
with the aid of equations (2), (4), and (18) are:

at =20
j
f =0
a_zf.=o
an2
o3r
=t -0
o3 > (26)
om _
on
Bzml - _ &leo
on2 Yo Po
y
at =1
£=1 )
_a_f-:o
on
.az_f.=0
on2
_ajé.‘:O (27)
5113
m1=O
dmy - g
on
52
;IlA:O J
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The momentum equation (7) with the sixth degree profile given by
equation (2&) was solved in reference T with the results:

= on - 5% + 69° - 2n° (28)
and
36,036
A = =i 2
ek (29)

Application of the boundary conditions for my given in equations

(26) and (27) to the profile of (25) yields the following values for the
coefficients bp(t).

by = 0 )
=303, )

b3=__23_cp %;I—;,bo>—10bo> (30)
b4=g¢G%,bQ+bm

b5=-.2_90 u}‘i,bo ~6bg )

where
(1.98x10%2) <u>
o )= ()
o s P - Trog
R TEEN
PZ 0

60,000

y-1 o 2 Lh©
Too<l + 5= M - . bo>

(1-bo)

1
- 15.8 -
I exp 5

(31)

Wow the two integrals, Fo and Fa, given by equations (13) and (1k),
respectively, become:

S5y 4 19 _29 9Ty, 4+ 36
Fo = £ bo + 55 bz + 52 b3 + 495 55 bs (32)

4
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and
1 2
%="R£[M;mﬁ{ﬁigﬂi—%e@[Bﬁ_é%%%}Lm“m”}m
(33)
where
2
I = (1.98x1022)2 (1%) é <%> (3%)

In equation (33) Fs represents the effect of the chemical reaction and
the main problem remaining is to find its effect on the solution of the
diffusion equation (8). Equation (33) can be considered to be made up

of two separate functions. The first, I'y, represents the specific reaction
rate and 1s solely dependent on the flight conditions of the vehicle. The
higher the altitude and the speed of flight, the smaller is the specific
rate I'. The second, the integrand, represents the degree of departure

of the fluid from the equilibrium state. Then for a relatively undis-
sociated gas, the higher the altitude and the speed of flight the greater
is the departure from the equilibrium state.

It is seen from the preceding discussion that the two effects in the
reaction term, Fgz, act in opposite directions with respect to flight
conditions - at least near the leading edge of the body. This effect
will be discussed further after some numerical examples are calculated.

It is noted here that the constant, C, appears only through the
parameter A 1in the entire analysis. This means that the solution of
the problem is independent of the particular value of C assumed. It
is only important that C remains constant throughout the analysis.

The integration of equation (8) must begin at the leading edge of
the plate. It is essential to the success of the method that the function
Fo and its derivative be well behaved at ¢ = 0. The atom concentration
is zero everywhere for ¢ S O; Fo is therefore zero for § = 0. The
limiting value of the derivative of Fs 1s obtained as follows. Equa-
tion (8) may be written:

_ Fa-(F2/2) A"
AE

Fo! (35)

where A' 1s constant as is seen from equation (29). Evaluation of

equation (35) shows that lim Fo' - 0/O. Application of L'Hospital's
£-0

rule then yields:



1L

L
1im Fo ! = I f 1 exp I:l5 ,8 - M} d.T]
£=0 6pA' Yo 6(0,m)% Toe8{0,1)

6(0,m) =1 + (?%i>mm2(1-f2)

Therefore, Fo! is seen to be well behaved at the leading edge.

where

Finally, equation (8) is solved numerically by the use of an IBM oL
digital computer. The standard "Adams-Moulton Predictor-Corrector
Varisble Mode" method was readily applicable in the programing. Once
programed, it took less than five minutes of machine time tc complete a
solution for x up to 15 feet.

In the numerical calculations, a value of 1.4 was used for the free
stream 7. The parameter Aho/cp2 is 23,900O R, according to reference I
Calculations were performed for values of pressure and free-stream
temperature corresponding to atmospheric conditions at three altitudes.
These values, which were obtained from reference 18, and the free-stream
Mach numbers used are shown in the following table.

Atitude, | T, P_s
ft oK atn Mo
50,000 | 218 0.1161 5, 10, 15
100,000 | 218 1.107x10"2 |10, 15, 20
200,000 | 348.9| 3.727x1074 |10, 15, 20

DISCUSSION

Typical profiles of atom mass fraction and temperature in the boundary
layer at various positions along the flat plate are shown in figures 2
and 3, respectively.

It can be seen from figure 2 that the dissociation takes place
primarily near the wall for the range of x considered here. This is
to be expected because the viscous dissipation is greatest there and
also the time available for the chemical reaction is large since the
fluid is moving very slowly there.

According to equilibrium criteria for the oxygen atom-molecule
reaction, practically no dissociation is expected below temperatures of
about 2000° K at the pressure for which figures 2 and 3 are plotted.

It is seen in figure 3 that temperature is below 2000° K in the outer
half of the boundary layer. Dissociation, therefore, is confined to the
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region adjacent to the wall within about 1/2 of the total boundary-layer
thickness. Atoms diffuse into the outer portion of the boundary layer
and there they recombine.

The profiles for the values of x considered here show a monotonic
increase in atom concentration and a monotonic decrease in temperature,
with x, throughout the boundary layer. The analysis of the preceding
paragraphs shows that in the outer portion of the boundary layer the atom
concentration must decrease and the temperature must increase as x 1is
continuously increased beycnd the range of x shown in figure 3. As x
is increased, Fg becomes large and begins to dominate equation (8), so
that the fluid more nearly approaches equilibrium. The integral method
used here can not be expected to satisfy the physical conditions at each
point in the boundary layer. The profiles, however, at x of the order
of 104 feet for instance, definitely show this correct trend. The
boundary layer will of course become turbulent before such large values
of x and the results of a laminar boundary-layer analysis are meaningless
for such high values of x.

Figures 4(a) through 4(c) show the dissociative relaxation history
of the gas at the wall for the various flight conditions. The percent
of equilibrium dissociation at the wall is plotted against the actual
distance measured along the plate from the leading edge. The equilibrium
values of dissociation are shown for each case which enables one to
determine the actual amount of dissociation.

It can readily be seen from the figures that, for the flight condi-
tions considered here, equilibrium is not reached for reasonable values
of x. At Mach number 15 and an altitude of 100,000 feet, for instance,
my,o would reach 99 percent of its equilibrium value at x = 3,775 feet.
At 200,000 feet and the same Mach number it does not approach equilibrium
this closely until x greater than 10,000 feet.

These arguments are based on the relaxation phenomena at the wall.
Because of the low velocity near the wall, more time is available for
the chemical reaction; therefore, the gas will approach the equilibrium
state faster at the wall than at any other place in the boundary layer.
For the cases considered here, it will take an unreasonably long distance
of x for the entire boundary layer to relax completely.

The figures 4(a) through 4(c) can be analyzed more effectively in
light of the reaction rate term F5 given by equation (33). Near the
leading edge, my is rather small. The predominant portion of Fg 1is
then T and the second term of the integrand; therefore

o

RS 60,000 ]
’ o eXp L15.8 —"Z_—TTOOG’E,T] _H (36)

Fa
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The above equation shows that the reaction rate near the leading edge,
for a given Mach number, is largely controlled by the pressure and it
is directly proportional to it. Comparison of the three figures brings
out this fact clearly - the lower the altitude, the higher the pressure
and, therefore, the initial relaxation is faster.

The rate of relaxation with respect to length becomes faster near
the leading edge as the Mach number is increased for all the cases shown
in figures 4(a) through 4(c) except when the Mach nunber is increased
from 15 to 20 at an altitude of 200,000 feet. It can be seen in equa-
tion (36) that, as the Mach number is increased for a given altitude,

Uy, tends to decrease the reaction rate while T,0 +tends to increase it.
This fact was also discussed in the analysis section. The free-stream
temperature at an altitude of 200,000 feet is 348.9° K whereas it is

218° X at the other two altitudes. Because of the increased free-stream
temperature at 200,000 feet, the net effect of increasing the Mach nuuber
from 15 to 20 is a decrease in the relaxation rate at the leading edge.

The temperature recovery factor is plotted against Mach number in
figures 5(a) and 5(b) for two different positions along the plate. The
temperature recovery factor, r, for the present case is:

Eﬁg%; b (&)
r(g) =1 - ———— (37)

(751) Mo<72

The equilibrium atom concentration 1s negligible for all x when M,

is smell and the recovery factor is 1. It decreases as the Mach number
is increased and atoms appear at the wall. According to equation (37),
however, the recovery factor should start increasing at sufficiently high
Mach numbers and should approach 1 as M, 1s continually increased. The
inversion point depends on the position along the flat plate as well as
on the flight condition. It is seen in the figures that the lower the
altitude, the higher the Mach number at which the inversion takes place.

Before concluding the present report, it may be interesting to
investigate qualitatively and briefly the case of a highly cooled flat
plate basing our predictions on the present analysis.

The temperature profile in a cooled compressible boundary layer of
inert perfect gas with a Prandtl number of unity is given in reference 19

as:
T-To _ _To) u -1\, o u < u
- _<1 = )——+<—2 M2 L -2 (38)
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It Ty = 700° K is assumed, the above equation indicates that the
maximum temperature within the cooled boundary layer at M, = 20 is about
the same as the maximum recovery temperature which occurs at M, = 10.

Now consider the following reaction rate law.

_ 1 | m® _ 1 _ 60,000,
YT [uml by <l5'8 e ) ml)] (39)

As a first approximation, the terms in equation (39), excluding I, for
gross rate of dissociation are of the same magnitude both for the cooled
boundary layer at M, = 20 and for the adiabatic one at M, = 10. The
specific reaction rate I is inversely proportional to M, (see eq. (34)).
The gross rate of dissociation, therefore, for the cooled boundary layer
may be estimated to be about half of that for the adiabatic wall case.

For the three altitudes, at x = 10 feet, the amount dissociated is
estimated from figure 4 to be 5 percent of the total or less. Now, the
maximum temperature occurs in the cooled boundary layer at a considerable
distance from the wall. The atoms must pass through a highly cooled
region before reaching the wall. The rate of recombination is very high
in this region because of the low temperature. Of the 5 percent or less
dissociated, it is very doubtful that any sizable amount of atoms could
actually survive to reach the wall. The total enthalpy difference between
the free stream and the wall is not varied by dissociatlon and recombina-
tion if all the atoms recombine before they reach the wall. Any difference
in heat transfer from the inert case is due mainly to the variation in

the values of the fluid properties, and this variation is usually small
(see ref. 20). Therefore, the heat transfer to a wall at temperatures

in the order of TOO® K through a hypersonic laminar boundary layer with
dissociative relaxation may be estimated quite closely by calculating

the heat transfer through an equivalent inert boundary layer using the
total enthalpy difference. The present analysis, of course, is limited

to temperatures and pressures corresponding to altitudes between 50,000
feet and 200,000 feet, and Mach numbers between 10 and 20.

On the other hand, the case of heat transfer through a laminar
boundary layer behind a strong shock wave where the reaction 1s predom-
inantly recombination is very important and the integral method should
yield some interesting solutions.

CONCLUDING REMARKS

A theoretical study was made to investigate the use of the integral
method in solving problems of the hypersonic laminar boundary layer with
finite rate dissociation and recombination. The method was applied, in
the present report, to a laminar boundary layer of pure oxygen over an
adiabatic flat plate, and the phenomenon of dissociative relaxation
caused by viscous dissipation was studied.
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Solutions to the present problem were obtained with relative ease,
and it seems that the integral method can be used for more complicated
cases, in general, without any essential difficulties.

For most of the cases, the numerical solutions for the range of
altitude of 50,000 to 200,000 feet and Mach numbers from 10 to 20 showed
that the dissociative relaxation of oxygen due to the viscous dissipation
is not sufficiently fast to justify an equilibrium spproximation for
reasonable lengths of the plate.

An estimation was made of the rate of chemical reaction within a
highly cooled boundary layer and its effect on the heat transfer. This
estimation was based on the present solutions for the adiabatic boundary
layer. It showed that the effect of finite rate dissociation and
recombination on heat transfer may be almost negligible for highly
cooled boundary layers.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 2, 19?9
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Me=15
Altitude=100,000 ft

Teo =218° K,
Poo = I.IO7x10 atmosphere
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Figure 2.- Typical atom mass-fraction profile through boundary layer.
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